Contact

Request Information

Please complete the form below, and an admissions advisor will contact you shortly.

800-628-8648

Apply Now

Ready to take the next step?

The application process is easy. We accept and review applications year-round, and qualified applicants can begin classes any month of the year, depending on your program and location.

Click Apply Now to get started on the next exciting chapter of your life!

Apply Now

MTH221 Calculus II

Lead Faculty: Dr. Igor Ya Subbotin

Course Description

A discussion of differentiation and integration concepts of the natural logarithm, exponential and inverse trigonometric functions and applications to volumes of revolution, work and arc length. Covers improper integrals and highlights ideas and contributions of Natpier, Huygens and Pascal. Graphing calculator is required.

Learning Outcomes

  • Show ability to formulate the functional representations of incremental components of area, volume, surface-area, work, fluid pressure, and be proficient in carrying these through to the integrand of the appropriate definite integral. The student will be successful in retrieving the antiderivative, and evaluating it, during the computation of such integrals.
  • andlt;span style=andquot;font-size:10.0pt;line-height:115%;font-family:andapos;Verdanaandapos;,andapos;sans-serifandapos;;color:black;andquot;andgt;andlt;span style=andquot;font-size:11.0pt;font-family:andapos;Times New Romanandapos;,andapos;serifandapos;;andquot;andgt;Interpret the concept of a definite integral geometrically, numerically, and analytically (e.g., limit of Riemann sums) andlt;span lang=andquot;ESandquot; style=andquot;font-size:10.0pt;line-height:115%;font-family:andapos;Verdanaandapos;,andapos;sans-serifandapos;;color:black;background:yellow;andquot;andgt;
  • Demonstrate capability to produce an inverse functions, when they exist. Show evidence of solid grasp of the differentiation and integration formulas and rules associated with inverse functions.
  • Derive antiderivatives by knowledgeable appeal to the more sophisticated methods of integration by parts, recursion, trigonometric substitution, and partial fractions. The student will demonstrate ability to set up numerical approximations to definite integrals for which closed-form solutions may be impractical to attain. The student will be able to recognize such circumstances.
  • Provide evidence of recognition and understanding of behavior of infinite sequences and series. Demonstrate techniques for testing their absolute or conditional convergence, if any. The student will recognize the appropriate logarithmic or trigonometric function to which the power series converges. Similarly, for each such function, the student will be able to generate associated partial sequences of the Maclaurin and Taylor series.
  • Compute with conic sections properties presented in algebraic, polar, and other parametric form. Lengths of arc, surface areas, and an understanding of applications to specific problems will be demonstrated.